Fast computation of eigenvalues of companion, comrade, and related matrices
نویسندگان
چکیده
The class of eigenvalue problems for upper Hessenberg matrices of banded-plus-spike form includes companion and comrade matrices as special cases. For this class of matrices a factored form is developed in which the matrix is represented as a product of essentially 2 × 2 matrices and a banded upper-triangular matrix. A non-unitary analogue of Francis’s implicitly-shifted QR algorithm that preserves the factored form and consequently computes the eigenvalues in O(n2) time and O(n) space is developed. Inexpensive a posteriori tests for stability and accuracy are performed as part of the algorithm. The results of numerical experiments are mixed but promising in certain areas. The single-shift version of the code applied to companion matrices is much faster than the nearest competitor.
منابع مشابه
A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices
In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...
متن کاملFast and stable QR eigenvalue algorithms for generalized companion matrices and secular equations
We introduce a class Cn of n × n structured matrices which includes three well-known classes of generalized companion matrices: tridiagonal plus rank-one matrices (comrade matrices), diagonal plus rank-one matrices and arrowhead matrices. Relying on the structure properties of Cn, we show that if A ∈ Cn then A′ = RQ ∈ Cn, where A = QR is the QR decomposition of A. This allows one to implement t...
متن کاملA Fast Algorithm for Computing Pseudospectra of Companion Matrices
The concept of pseudospectra was introduced by Trefethen during the 1990s and became a popular tool to explain the behavior of non-normal matrices. It is well known that the zeros of a polynomial are equal to the eigenvalues of the associated companion matrix. It is feasible to do the sensitivity analysis of the zeros of polynomials by the tool of pseudospectra of companion matrices. Thus, the ...
متن کاملComputing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method
A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...
متن کاملBackward stability of polynomial root-finding using Fiedler companion matrices
Computing roots of scalar polynomials as the eigenvalues of Frobenius companion matrices using backward stable eigenvalue algorithms is a classical approach. The introduction of new families of companion matrices allows for the use of other matrices in the root-finding problem. In this paper, we analyze the backward stability of polynomial root-finding algorithms via Fiedler companion matrices....
متن کامل